
iNFORMER Walkthrough

RNET Team

Outline

● iNFORMER Introduction
● Obtaining iNFORMER.
● Installation and Licensing.
● Writing a Sample Application.
● Smart API
● Support Information

Introduction
● iNFORMER is a MapReduce like

API for in-situ/streaming data
processing framework.

● Implemented in C/C++ and has
low-overhead.

● An MPI process that runs through
YARN.

● Easy to use API with only a small
number of functions to
implement.

Obtaining iNFORMER and Licensing

Licensing

● Go to iNFORMER License and Downloads page and fill in the relevant details

to obtain a trial License that would be valid for 30 days.

● The user will obtain a License certificate and a Public Key file after a few days.

● For full details on the Installation and Licensing for Smart, please refer to
iNFORMERManual.pdf that is present in the iNFORMER package.

http://www.rnet-tech.com/us/component/content/article/38

Writing a Sample Application

Outline

● The Smart system exposes two base classes (Scheduler and RedObj) and

requires the user to override particular functions in the Scheduler class.

● This API is outlined at the end of the document for Reference.

● All MapReduce like problems can be broken down to this API and Smart

presents a simplified interface using this API.

● The examples/ folder outlines typical algorithms implemented using this API

and in different execution modes.

Running an Example
● Smart based jobs can be run either through YARN or in a standalone mode.

● To run through YARN, the syntax to use is

yarn jar -a <binary> -o <args> -n <number of nodes> -c

<cores> -s <nameserver host>

● To run Smart binary in a standalone mode, YARN integration must be

disabled and the resulting application should be recompiled.

● For more information, please refer to the iNFORMER Manual.

Histogram Example - Step by Step Explanation

● Here we explain a histogram implementation using the

histogram_time_sharing example.

● In this example, the input data is generated in the range (rank) to (rank +

(n-1)) with n being the desired number of elements and rank being the

process rank. Say n = 5 and rank = 0 (only one process, say), then the

generated elements are (0, 1, 2, 3, 4).

● A histogram is simply a frequency distribution which counts the number of

occurrences of elements belonging to a “bucket”, i.e. an interval size.

● If the bucket width was 1 (say), the histogram would then look like

Element 0 1 2 3 4

Bucket ID 0 1 2 3 4

Count 1 1 1 1 1

● With the bucket width as 2, the corresponding histogram would be

Element 0
1

2
3

4

Bucket ID 0 1 2

Count 2 2 1

Key

Value

Key

Value

● In the Smart system, the Key and Values shown are stored in the combination
map.

Setting up the Example
● To reproduce the previous results, the

example settings can be modified as follows:

○ In histogram_time_sharing.cpp, set the

macro NUM_ELEMS to 5.

○ In histogram.h, set the BUCKET_WIDTH to

1.

○ If you would like to run the example as a

standalone MPI binary, define the macro

DISABLE_YARN_INTEGRATION before the

first instance of scheduler.h.

● Compile the example and run it with -n 1

(either in standalone mode or through YARN).

Examine the output and this should be the

same as:

Simulation time = 0.00 secs.
Simulation data is ready...
Run in-situ processing...
Scheduler: Initializing with 2 threads and 1
nodes...
Scheduler: Constructing the reduction map for all
the threads...
Scheduler: Reduction map for 2 threads is
ready.
In-situ processing is done.

Combination map on node 0:
(key = 0, value = (count = 1))
(key = 1, value = (count = 1))
(key = 2, value = (count = 1))
(key = 3, value = (count = 1))
(key = 4, value = (count = 1))

Final output on the master node:
1 1 1 1 1
Analytics time = 0.00 secs.
Total processing time on node 0 = 0.00 secs.

● Now set the BUCKET_WIDTH to 2.

● Recompile and run with -n 1 and

examine the output, which should

be as shown on the right (only the

relevant part is shown here).

● How is this realized with the Smart

API? We will explore that next.

…
…
…
In-situ processing is
done.

Combination map on node 0:
(key = 0, value = (count = 2))
(key = 1, value = (count = 2))
(key = 2, value = (count =

1))
Final output on the master node:
2 2 1
Analytics time = 0.00 secs.

Implementation

● As we have seen before, the Bucket Id forms the Key in the combination map
and the count forms the Value.

● The key is calculated from the gen_key function that needs to be defined
when inheriting the Scheduler class.

gen_key(loc,data, …)

key count

combination_map

● For our particular case, the gen_key is defined as:

int gen_key(loc, data, ...) {
 return (int)(data[loc] - MIN_VAL) / BUCKET_WIDTH;
 }

● Which corresponds to the relevant bucket id, i.e. the key in the combination

map.

● Within a single rank, each thread can work on a portion of the array, i.e.
Local Data Array

Thread local
Reduction

Threads

● The value in the key-value pair is updated by the accumulate function. This
uses the pointer to the value object to simply increment the count (frequency).

 void accumulate(chunk, data, red_obj*) {
 if (red_obj == nullptr) {
 red_obj.reset(new Hist);
 }
 Hist* h = static_cast<Hist*>(red_obj.get());
 for (size_t i = 0; i < chunk.length; ++i) {
 dprintf("Adding the element chunk[%lu] = %.0f.\n", chunk.start + i,
data[chunk.start + i]);
 h->count++;
 }
 }

● If there are duplicate keys, they would need to be merged to ensure an
accurate reduction, i.e.

X X

() ()

● This is achieved by the function local_combine, which in turn calls the
merge function, that needs to be implemented by the user as well.

● In the histogram case, it simply means that the bucket counts need to be
summed up.

 void merge(const red_obj, com_obj) {
 const Hist* hr = static_cast<const Hist*>(&red_obj);
 Hist* hc = static_cast<Hist*>(com_obj.get());

 hc->count += hr->count;
 }

X - duplicate value

Multi-process case
● If we run the same example with more than one process, by specifying -n 2

(say) and keeping the Bucket width as 1, then the generated input data would
be

Rank 0

0 1 2 3 4

Rank 1

1 2 3 4 5

● Within the rank, the corresponding combination map entries would then be

Element 0 1 2 3 4

Bucket ID 0 1 2 3 4

Count 1 1 1 1 1

Rank 0

Element 1 2 3 4 5

Bucket ID 1 2 3 4 5

Count 1 1 1 1 1

Rank 1

● Merging of the two entries is then carried out by global_combine.

● MPI routines are called here since this is an interprocess communication. This

needs the combination maps to be serialized at the sender and deserialized at

the receiving end.

● Serialization is handled internally and the combination map is sent as a

sequence of bytes. Deserialization must then be implemented by the user:

 void deserialize(obj, const char* data) {
 obj.reset(new Hist);
 memcpy(obj.get(), data, sizeof(Hist));
 }

● The result of the merging should be

Key 0 1 2 3 4

Value 1 1 1 1 1

Key 1 2 3 4 5

Value 1 1 1 1 1

Key 0 1 2 3 4 5

Value 1 2 2 2 2 1

(global_combine)

● Running the example with -n 2, we obtain the output (relevant parts shown) as:

In-situ processing is done.

Combination map on node 0:
(key = 0, value = (count = 1))
(key = 1, value = (count = 2))
(key = 2, value = (count = 2))
(key = 3, value = (count = 2))
(key = 4, value = (count = 2))
(key = 5, value = (count = 1))

Final output on the master node:
1 2 2 2 2 1

Histogram Class - Definition
Derive a reduction object:
 struct Bucket : public RedObj {
 size_t count = 0;
};

Derive a system scheduler:
template <class In>
 class Histogram : public Scheduler<In, size_t> {
 // Compute the bucket ID as the key.
 int gen_key(Chunk, data, combination_map) override {
 // Each chunk has a single element.
 return (data[chunk.start] - MIN)) / BUCKET_WIDTH;
 }
 // Accumulate chunk on red_obj.
 void accumulate(chunk, data, red_obj) override {
 if (red_obj == nullptr) red_obj.reset(new Bucket);
 red_obj->count++;
 }
 // Merge red_obj into com_obj.
 void merge(red_obj, com_obj) override {
 com_obj->count += red_obj->count;
 }
};

● Function signatures are
approximated here. For full
details, please refer to Table
4 in the iNFORMER User
Manual.

● For this particular example,
we need to implement only
the three functions:

○ gen_key
○ accumulate
○ merge

Execution - Time Sharing Mode

● Initialize the Scheduler

arguments.

● Initialize the Smart runtime

with the arguments.

● Set the size of the

reduction object.

● Trigger the run function for

time sharing mode.

 SchedArgs args(NUM_THREADS, STEP); // predefined macros

 unique_ptr<Scheduler<float, size_t>> h(new

Histogram<float>(args));

 h->set_red_obj_size(sizeof(Hist));

 h->run(in, total_len, nullptr, 0); // Note that here the

output array is nullptr.

 if (rank == 0)

 printf("In-situ processing is done.\n");

● Each rank takes care of a partition

of data.

● Within a rank, reduction is carried

out with threads and local

combination.

● If desired, global combination is

carried out.

Smart API

Initialization API

SchedArgs(int num_threads, …) Initialize the Scheduler with relevant args.

Scheduler(const SchedArgs& args) Initialize Smart runtime.

set_global_combination(bool flag) Enable/disable global combination. (Default = enabled)

get_combination_map() Retrieve the local combination map.

run(Type* in, size_t len, …) Runs the analytics by generating a single key given a
unit chunk in time sharing mode.

run2(Type* in, size_t len, …) Runs analytics by generating multiple keys.

feed(args, …) Feeds input in space sharing mode.

run(Type* out, …) Run by generating single key in space sharing mode

run2(Type* out, …) Run by generating multiple keys in space sharing mode

Execution API - Scheduler

int gen_key(chunk, data, …) Generate a single key given unit chunk.

gen_keys(chunk, data, keys, …) Generate multiple keys given unit chunk.

accumulate(chunk, data, red_obj) Accumulate unit chunk on reduction object.

merge(red_obj, com_obj) Merge first reduction object into second.

process_extra_data(extra_data, …) Processes extra data to initialize combination map, if
needed.

deserialize(obj, data) Construct a reduction object from serialized reduction
object.

post_combine(…) Perform post-combination processing.

convert(red_obj, out) Converts reduction to output object.

RedObj Functions

void reset() Reset reduction object.

bool trigger() Set trigger function for early emission.

Support and Contact Information

● For further questions and iNFORMER Support, please send a mail to

informer@RNET-Tech.com

mailto:informer@RNET-Tech.com
mailto:informer@RNET-Tech.com

