INFORMER Walkthrough

RNET Team

Qutline

Hortonworks

iINFORMER Introduction
Obtaining INFORMER.
Installation and Licensing.

Writing a Sample Application.

Smart API
Support Information

iNFORMER

Introduction

Business Scientific ‘ Custom ‘ ® iNFORMER is a MapReduce like
e aeplcatons Sepisstone API for in-situ/streaming data

processing framework.

" " 2 ® Implemented in C/C++ and has

. low-overhead.

® An MPI process that runs through
YARN.

® Easy to use APl with only a small
number of functions to
implement.

APPLICATION

iNFORMER

DATA SYSTEM

iNFORMER
. GINET =
ortonworks T

Technologies, Inc. e

Obtaining INFORMER and Licensing

Licensing

® GotoiNFORMER License and Downloads page and fill in the relevant details

to obtain a trial License that would be valid for 30 days.
® The user will obtain a License certificate and a Public Key file after a few days.

® For full details on the Installation and Licensing for Smart, please refer to
iINFORMERManual.pdf that is present in the INFORMER package.

B iNFORMER
Hortonworks RS i, e L
echnologies, Inc &

http://www.rnet-tech.com/us/component/content/article/38

Writing a Sample Application

Qutline

® The Smart system exposes two base classes (Scheduler and RedOb7j) and
requires the user to override particular functions in the Scheduler class.
This APl is outlined at the end of the document for Reference.
All MapReduce like problems can be broken down to this APl and Smart
presents a simplified interface using this API.

® The examples/ folder outlines typical algorithms implemented using this API

and in different execution modes.

iNFORMER

Hortonworks @NET

Running an Example

® Smart based jobs can be run either through YARN or in a standalone mode.

® To runthrough YARN, the syntax to use is

yvarn Jjar —a <binary> -o <args> -n <number of nodes> -c

<cores> -s <nameserver host>

e To run Smart binary in a standalone mode, YARN integration must be
disabled and the resulting application should be recompiled.

e For more information, please refer to the INFORMER Manual.

Hortonworks @N ET

Histogram Example - Step by Step Explanation

® Here we explain a histogram implementation using the
histogram time sharing example.

® In this example, the input data is generated in the range (rank) to (rank +
(n—1)) with n being the desired number of elements and rank being the
process rank. Sayn = 5and rank = 0 (only one process, say), then the
generated elements are (0, 1, 2, 3, 4).

® A histogram is simply a frequency distribution which counts the number of

occurrences of elements belonging to a “bucket”, i.e. an interval size.

Hortonworks ‘ ‘NET
D

If the bucket width was 1 (say), the histogram would then look like

Element 1 2
Bucket ID 1 2
Count 1 1

— Key

—— Value

® With the bucket width as 2, the corresponding histogram would be

Hortonworks

In the Smart system, the Key and Values shown are stored in the combination
map.

Element 0 2
1 3

Bucket ID 0 1
Count 2 2

[RINET

— Key

—— Value

iNFORMER

Setting up the Example

® Toreproduce the previous results, the Simulation time = ©.09 secs.

Simulation data is ready...

example settings can be modified as follows: Run in-situ processing. ..
. . . Scheduler: Initializing with 2 threads and 1
o Inhistogram time sharing.cpp, setthe nodes. . .

Scheduler: Constructing the reduction map for all

macro NUM ELEMS to 5. the threads. ..

o Inhistogram.h, setthe BUCKET WIDTH to Scheduler: Reduction map for 2 threads is
' - ready.
1. In-situ processing is done.
o If you would like to run the example as a Combination map on node 0:
)] (key = 0, value = (count = 1))
standalone MPI binary, define the macro (key = 1, value = (count = 1))
(key = 2, value = (count = 1))
DISABLE YARN INTEGRATION before the (key = 3. value = (count = 1))
first instance of scheduler.h. , (key =4, value = (count = 1))
Final output on the master node:
171111

® Compile the example and run it with -n 1 , ,
Analytics time = 0.00 secs.

Total processing time on node © = 0.00 secs.

(either in standalone mode or through YARN).
Examine the output and this should be the

Same as: iNFORMER

Hortonworks ‘i‘ N E T o e
D

® Now setthe BUCKET WIDTH to 2.

® Recompile and run with -n 1 and - o
In-situ processing 1is
examine the output, which should done.

Combination map on node ©:

be as shown on the right (only the (key = @, value = (count = 2))
. (key = 1, value = (count = 2))
relevant part is shown here). (key = 2, value = (count =
1))
® How is this realized with the Smart ;iga} output on the master node:

API? We will explore that next. Analytics time = 0.00 secs.

iNFORMER

Hortonworks ‘ ‘NET
D

Implementation

® As we have seen before, the Bucket Id forms the Key in the combination map

and the count forms the Value.

® The key is calculated from the gen key function that needs to be defined

when inheriting the Scheduler class.

gen_key(loc,data, ..)

N

—

combination_map

)
) O
o] o)
~————

Hortonworks

) O
EINET

—_—

—

iNFORMER

® For our particular case, the gen key is defined as:

® Which corresponds to the relevant bucket id, i.e. the key in the combination

Hortonworks

map.

int gen_key(loc, data, ...) {
return (int)(data[loc] - MIN_VAL) / BUCKET_WIDTH;

}

[RnET

iNFORMER

® The value in the key-value pair is updated by the accumulate function. This
uses the pointer to the value object to simply increment the count (frequency).

void accumulate(chunk, data, red_obj*) {
if (red_obj == nullptr) {
red_obj.reset(new Hist);
}
Hist* h = static cast<Hist*>(red_obj.get());
for (size_t i = @; i < chunk.length; ++i) {
dprintf("Adding the element chunk[%lu] = %.8f.\n", chunk.start + i,
data[chunk.start + i]);
h->count++;
}
}

® Within a single rank, each thread can work on a portion of the array, i.e.

Local Data Array

Thread local
Reduction — { { { {
Threads —* é é é)
iNFORMER

Hortonworks

® If there are duplicate keys, they would need to be merged to ensure an
accurate reduction, i.e.

X - duplicate value

o7 i o

® This is achieved by the function 1ocal combine, which in turn calls the
merge function, that needs to be implemented by the user as well.

® Inthe histogram case, it simply means that the bucket counts need to be
summed up.

void merge(const red_obj, com_obj) {
const Hist* hr = static cast<const Hist*>(&red_obj);
Hist* hc = static cast<Hist*>(com_obj.get());

hc->count += hr->count;

}

iNFORMER

Hortonworks BHNET

Multi-process case

® If we run the same example with more than one process, by specifying -n 2
(say) and keeping the Bucket width as 1, then the generated input data would

be
Rank 0 Rank 1
0 1 2 3 4 1 2 3 4 5

® Within the rank, the corresponding combination map entries would then be

|

Hortonworks

Rank 0 Rank 1
Element 0 1 2 3 4 Element 1 2 3 4)
BucketID | O 1 2 3 4 Bucket ID 1 2 3 4 5
Count 1 1 1 1 1 Count 1 1 1 1 1
ENET

Hortonworks

Merging of the two entries is then carried out by global combine.

MPI routines are called here since this is an interprocess communication. This
needs the combination maps to be serialized at the sender and deserialized at
the receiving end.

Serialization is handled internally and the combination map is sent as a

sequence of bytes. Deserialization must then be implemented by the user:

void deserialize(obj, const char* data) {
obj.reset(new Hist);
memcpy (obj.get(), data, sizeof(Hist));
}

[RINET

iNFORMER

® The result of the merging should be

Hortonworks

Key 4 Key
Value 1 Value
(global_combine)
Key ' 0 1|2 3 5
Value | 1 2 | 2 2 1

iNFORMER

® Running the example with -n 2, we obtain the output (relevant parts shown) as:

In-situ processing is done.

Combination map on node 0:

(key = 0, value = (count = 1))
(key = 1, value = (count = 2))
(key = 2, value = (count = 2))
(key = 3, value = (count = 2))
(key = 4, value = (count = 2))
(key = 5, value = (count = 1))

Final output on the master node:
122221

Histogram Class - Definition

Derive a reduction object: ® Function Signatures are

struct Bucket : public RedObj {

size_t count = 0; approximated here. For full
}i
details, please refer to Table

Derive a system scheduler: . .
template <class In> 4 in the INFORMER User
class Histogram : public Scheduler<In, size t> { Manual

// Compute the bucket ID as the key.
int gen key(Chunk, data, combination map) override {
// Each chunk has a single element.

return (data[chunk.start] - MIN)) / BUCKET WIDTH;
}
// Accumulate chunk on red obj. ® Forthi ticul |
void accumulate (chunk, data, red obj) override { or IS par ICular examp e’
if (red obj == nullptr) red obj.reset (new Bucket); H
red obj—>count-+; we need to implement only
} . , the three functions:
// Merge red obj into com obj.
void merge (red obj, com obj) override { ©) gen_key
com obj->count += red obj->count; o accumulate
}
} ; O merge iNFORMER
NET
N1

Hortonworks

Execution - Time Sharing Mode

® Initialize the Scheduler

SchedArgs args (NUM THREADS, STEP); // predefined macros
- ’ arguments.

unique ptr<Scheduler<float, size t>> h(new

Histogram<float> (args)) ; ® |Initialize the Smart runtime

h->set red obj size(sizeof (Hist));

h->run(in, total len, nullptr, 0); // Note that here the Wlth the arguments'

output array is nullptr. o Set the Size Of the
if (rank == 0)
printf ("In-situ processing is done.\n"); reduction ObjeCt.

® Trigger the run function for

time sharing mode.

iNFORMER

T

INET

p
=
|

|

Hortonworks

buffer_size ® Each rank takes care of a partition

g
of data.

Threads ™. ¢ /Threads
d ._ " Reducti
Reduction P [resaeen ® \Within a rank, reduction is carried
W h» N’ y
Local_combination tocat_combination out with threads and local
combination.
® |If desired, global combination is
Global_combination carried out.

iNFORMER

Hortonworks

[RINET

Smart API

Y. 8 iNFORMER
Technologies, Inc.

Initialization API

SchedArgs (int num threads,
Scheduler (const SchedArgs& args)
set global combination (bool flag)
get combination map ()

run (Type* in, size t len,

run2 (Type* 1in,
feed(args, ..)
run (Type* out,

run?2 (Type* out,

size t len,

)

)

)

)

)

Initialize the Scheduler with relevant args.

Initialize Smart runtime.

Enable/disable global combination. (Default = enabled)
Retrieve the local combination map.

Runs the analytics by generating a single key given a
unit chunk in time sharing mode.

Runs analytics by generating multiple keys.
Feeds input in space sharing mode.
Run by generating single key in space sharing mode

Run by generating multiple keys in space sharing mode

Execution API - Scheduler

int gen key(chunk, data, ..)

gen keys (chunk, data,

keys, ..)

accumulate (chunk, data, red obj)

merge (red obj, com obj)

process extra data(extra data,

deserialize (obj,

post combine (..)

convert (red obj,

data)

out)

)

Generate a single key given unit chunk.
Generate multiple keys given unit chunk.
Accumulate unit chunk on reduction object.
Merge first reduction object into second.

Processes extra data to initialize combination map, if
needed.

Construct a reduction object from serialized reduction
object.

Perform post-combination processing.

Converts reduction to output object.

RedObj Functions

void reset () Reset reduction object.

bool trigger () Set trigger function for early emission.

iNFORMER

Hortonworks @ NE :r

Support and Contact Information

® For further questions and INFORMER Support, please send a mail to

informer@RNET-Tech.com

Hortonworks BHNET

iNFORMER

mailto:informer@RNET-Tech.com
mailto:informer@RNET-Tech.com

