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Introduction 

iNFORMER Smart is a framework that is aimed at supporting large scale data processing for in 

its native format through a low overhead MapReduce API. This document acts as a manual with 

introductory code samples and an overview on how to use the Smart system. Many of the 

figures, code samples and text are taken from the paper [1] and from the Smart UserGuide [2], 

licensed by OSU to RNET for commercial purposes. 

 

Dependencies 

iNFORMER Smart has the following dependencies which must be present for successful 

compilation. These are: 

 

● GCC 4.8.4 - Used for C++11 features. 

○ If the Intel Compiler is being used 

■ Should be at least version 14.0 

■ May require modifications to the inheritance of constructors. 

○ OpenMP should be newer than 3.1 

● MPICH-3.2 - http://www.mpich.org/downloads/ 

● NetCDF 4.1.3 

● HDF5 1.8.11 

● Zlib 1.2.8 

 

License Management 

To support the license management, the following dependencies must be installed 

● Python 2.7 interpreter and library files. 

● OpenSSL package. Version 1.0.1f supported. Earlier versions not tested. 

 

Hadoop Cluster Settings 

iNFORMER Smart is certified for Yarn integration in Hadoop. To execute in a cluster (tested on 

Linux clusters), iNFORMER Smart will need the following YARN settings to be configured: 

 

 

 

Property Setting 

yarn.nodemanager.linux-container-
executor.resources-handler.class 

org.apache.hadoop.yarn.server.nodemanager
.util.CgroupsLCEResourcesHandler 

yarn.nodemanager.container-executor.class org.apache.hadoop.yarn.server.nodemanager

http://www.mpich.org/downloads/
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.LinuxContainerExecutor 

 

Introduction to Smart 

Smart (in-Situ MApReduce liTe) is a MapReduce-like framework originally designed for in-situ 

scientific analytics. Unlike the conventional MapReduce implementations that mostly load data 

from file systems, Smart can load simulated data directly from memory in each node of a 

cluster. 

It leverages a MapReduce-like API to parallelize the analytics, while meeting the strict memory 

constraints on the analytics code when it is co-located with simulation. Using Smart for in-situ 

analytics requires only minimal changes to the simulation program itself. 

 

Smart can be launched from a parallel (OpenMP and/or MPI) code region once each simulation 

output partition is ready, while the global analytics result can be directly obtained after the 

parallel code converges. 

 

 

 
Fig 1. Smart operation modes 

 

 

Smart can be initialized in various modes as shown in Figure 1. For the purpose of in-situ 

analytics, Smart provides both time sharing and space sharing modes for maximizing the 
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performance in different scenarios. Time sharing mode aims to minimize the memory 

consumption of analytics, by avoiding extra data copy of simulation output. This mode is 

generally preferred. 

Space sharing mode can support concurrent simulation and analytics on two separate groups of 

cores of each node. This mode can be more useful when simulation task reaches a scalability 

bottleneck with the given resources. In addition, offline analytics for disk-resident data (in 

NetCDF/HDF5 format) is also supported. All these modes can be switched flexibly with the 

same analytics code (similar to a MapReduce job). 

 

Time Sharing Mode for In-Situ Analytics 

Time sharing mode can minimize the memory consumption of analytics, by avoiding extra data 

copy of simulation output. Note that although the memory copy itself is likely not an expensive 

operation, it can increase the total memory requirements, which can lead to performance 

degradation in certain cases. 

 

As shown in Figure 2, to avoid an extra data copy, Smart sets a read pointer on the memory 

space corresponding to the output from a particular time-step (when the data is ready). Thus, 

this data can be now shared by both simulation and analytics programs. However, because this 

memory space is subject to being overwritten by the simulation program, the analytics logic 

must execute before the simulation resumes. As a result, in this mode simulation and analytics 

run in turns, and each makes full use of all the cores of each node (and hence the name time-

sharing). 
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Fig 2: Time sharing mode in Smart 

 

Space Sharing Mode for In-Situ Analytics 

Consider a cluster where every node is an Intel Xeon Phi. Since each coprocessor has a much 

larger number of cores than the CPU, a simulation program written for a standard multi-core 

cluster is unlikely to use all cores of the Xeon Phi effectively. In this case, instead of stopping 

the progress of simulation periodically and performing the analytics, one can easily dedicate a 

certain number of the available cores for the analytics. More specifically, all the cores are 

divided into two separate groups – one is specifically used for simulation, and the other is 

dedicated to analytics. 

 

In this mode, besides the parallelism of multi-threading as well as the parallelism on multiple 

nodes, another task-level parallelism is placed on top of these two parallelism levels. As shown 

in Figure 3, Smart maintains a circular buffer internally, in which each cell can allocate memory 

on demand and be used for caching the output from a time-step. In this mode, one can view 

simulation program and Smart as the producer and the consumer, respectively. Once a time-

step’s output is generated, if the circular buffer is not full, then this data can be fed to the Smart 

middleware by copying it to an empty cell. Otherwise, the simulation program will be blocked 

until a cell in circular buffer becomes available. In this example where each node is though 

represented as an 8-core machine, 6 cores are dedicated to simulation, and 42 cores to 

analytics. The optimal division of the two groups of cores is determined by both hardware and 

specific application run, and currently we find such optimal division by sample runs. 

 

 
Fig 3: Space sharing mode in Smart 
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Offline Analytics 

Offline analytics serve as a complementary feature to analyze disk-resident data. Particularly, 

the current version can support the input data in NetCDF [3] or HDF5 [4] format. In addition, 

Smart can allow the user to perform analytics on other data formats, by implementing some 

format-specific data loading interfaces in Smart. 

 

Getting Started with Smart 

This chapter discusses the setup of Smart environment, as well as the commands to run the 

programs in different analytics modes. 

 

Fetch the iNFORMER package by visiting the iNFORMER License and Downloads section. 

Please follow the instructions on the website and fill in the relevant details to obtain a trial 

iNFORMER License, which is necessary for using iNFORMER. 

 

The downloaded iNFORMER package will contain two archives - mpich2-yarn and Smart. 

 

MPICH2-Yarn Installation 

The MPICH2-Yarn archive is available as part of the download package. The archive will consist 

of three files: 

● The MPICH2-Yarn JAR file. 

● yarn_mpi_server, which is a binary executable. 

● mpi-site.xml, which is processed during MPICH2-Yarn startup. 

Smart Installation 

Obtaining the License 

The License file must be obtained from iNFORMER License and Downloads page as well. 

Required details must be filled in and an email will be sent with the trial license files which will 

be valid for a period of 30 days. For a complete license file, please send a request to 

informer@RNET-Tech.com  

 

Licensing Setup 

License file locations are specified for iNFORMER by setting two environment variables 

 

INFORMER_CERTIFICATE_FILE 

INFORMER_PUBLIC_FILE 

http://www.rnet-tech.com/us/component/content/article/38
http://www.rnet-tech.com/us/component/content/article/38
mailto:informer@RNET-Tech.com
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to point to the Certificate and Public Key files respectively. 

Required Dependencies 

To be adapted to scientific computing environment, Smart uses OpenMP for shared-memory 

computing within each compute node, and uses MPI for distributed computing among multiple 

compute nodes. Thus, both OpenMP and MPI should be installed. Particularly, we suggest that 

the OpenMP version should be at least 3.1. The MPI version used is MPICH-3.2 and the Hydra 

nameserver from the MPICH package must be present for full integration with YARN. 

 

Before running any application, we strongly recommend the user to set CPU affinity for 

OpenMP. It turns out that a 10X speedup can be achieved simply by setting an environment 

variable for the latest OpenMP version: 

 

export OMP_PROC_BIND=true 

 

Also, if offline analytics is required, the corresponding libraries should be installed to read the 

input data in NetCDF or HDF5 format. 

Compiler with C++11 support 

The version of GNU compiler should be at least 4.8.4 for C++11 support. If the Intel compiler is 

used, the version should be at least 14.0. Since some new C++11 features (e.g., constructor 

inheritance based on using-declaration) currently are not supported by the Intel compiler, some 

minor modifications on C++11 syntax may be required. 

Compilation 

Smart is distributed as a single library under folder (lib). Example programs are compiled 

against this library with appropriate flags for HDF5 [3] or NetCDF [4], if needed. The User has to 

ensure correct setup of HDF5 and other optional dependencies. 

 

CMake is used for generating the build files for Smart. As per recommended CMake practices, it 

is advisable to have an out of source tree build. CMake doesn’t currently support finding 

NetCDF installed modules, so if you would like to use your NetCDF installation, you would need 

to pass a hint to CMake. 

 

1. Create an out of source build in a folder, say build/. Change directory to this folder. 

2. From this folder, execute cmake ${SMART_DWNLDED_BINARY_DIR} -

DNETCDF_PATH=<netcdf path> 

3. The CMake script will look for the include/ and lib/ files under <netcdf path>. If 

the NetCDF path is not specified, a warning will be thrown, but the build setup will 

continue. 
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Building Examples 

To support three different analytics modes, three sets of examples are provided under the 

directory examples/, which consists of four subdirectories: 

 

1. common_app_headers: Contains some application-specific analytics code. 

2. in_situ_time_sharing_analytics: Contains the examples that run in-situ analytics in time 

sharing mode. 

3. in_situ_space_sharing_analytics: Contains the examples that run in-situ analytics in 

space sharing mode. 

4. offline_analytics: Contains the examples that run offline analytics over NetCDF/HDF5 

data. 

 

Since all the three modes can use same application-specific analytics code, the common 

header declarations are provided under the directory common_app_headers. 

 

Once the CMake setup is done, simply call make at the top level build folder to build all example 

files. To build a specific examples folder, simply call make from that examples folder. Only the 

offline_analytics examples would need HDF5 or NetCDF libraries. The other examples should 

compile without additional dependencies. 

 

 

To support Smart execution on the Intel MIC cluster, the user needs to make a MIC binary. In 

this case, the compiling flag -mmic should be added. To compile on an Intel MIC cluster, the 

user should use -openmp rather than -fopenmp to enable OpenMP. Otherwise, the thread 

level in OpenMP cannot be controlled on MIC nodes. 

Building Custom Codes 

If you would like to build your own test codes, you can modify the CMake generated Makefile or 

use a simplified Makefile that is present in each of the examples/ folder (named 

Makefile.bkup).  This file has placeholders for the location of HDF5, NetCDF and MPI 

libraries which need to be manually filled in. 

Running Smart Binaries 

Smart is executed as an MPI process through Yarn. To facilitate this, we need mpich-rnet-yarn 

to be setup and installed as explained before. The user also needs to ensure that the Hydra 

nameserver (from MPICH-3.2) is up and running. 

 

The Mpich-rnet-yarn application takes in the following command line parameters (also 

generated by doing yarn jar <mpich-rnet-jar> --help): 

 

Opt Expansion and Args Default Description 
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Value 

-a --mpi-application <arg> -- Location of the mpi application to be executed. 

-c --container-vcores 
<arg> 

1 Number of virtual cores requested. 

-D -D <property=value> -- DFS location, representing the source data of MPI. 

-d --debug -- Dump out debug information. 

-h --help -- Print usage information. 

-k --kill <arg> -- Kill running MPI Application ID. 

-M --master-memory 
<arg> 

64 Amount of memory in MB to be requested to run the 
Application Master. 

-m --container-memory 
<arg> 

64 Amount of memory in MB to be requested to run the 
shell command. 

-n --num-containers 
<arg> 

1 Number of containers on which the MPI program 
needs to be executed. 

-o --mpi-options <arg> -- Options for MPI program. 

-O -O <property=value> -- DFS location, representing the MPI result. 

-P --priority <arg> 0 Application Priority 

-p --container-priority 
<arg> 

0 Priority for the shell command containers. 

-q --queue <arg> default RM Queue in which the application will be submitted. 

-s --mpi-name-service 
<arg> 

“” MPICH Nameserver hostname 

-S -S <property=value> -- Do all containers download the same file? 

-t --timeout <arg> 8.64 X 
107, i..e. 

24 
hours 

 

Wall-time, application timeout in milliseconds. 

 
Table 1: Outline of MPI Yarn options. 

 

To run a particular example, say, the histogram_time_sharing, we would execute it as: 
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yarn jar <JAR file of mpich-rnet-yarn> -a <histogram_time_sharing 

binary> -n 1 -c 1 -s <nameserver host> 

 

This particular example does not take in any filenames or parameters. 

Consider running the logistic_regression_offline example. This may require more 

memory, so we explicitly specify it now, using the -M and -m options. This example also needs 

the filename (disk resident mode), so we specify that with the -o option. 

 

yarn jar <JAR of mpich-rnet-yarn> -a <logistic_regression_offline 

binary path> -M 1024 -m 1024 -n 1 -c 1 -s <nameserver host> 

 

Developing with Smart code 

Smart System Overview 

 

 
Fig 4: Design overview of Smart. 

 

Figure 4 gives an overview of the execution flow of a typical application using Smart in a 

distributed environment. First, given a simulation program, each compute node generates a 

data partition at each time-step. The data partition can be fed directly to the Smart analytics jobs 

(in-situ mode) or can be output to a disk and analyzed later (offline mode). Unlike most 

distributed data processing systems, Smart can directly expose these partitions to the 

subsequent processing, rather than involve any explicit data partitioning among the compute 

nodes. 
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Next, the Smart runtime scheduler processes partitioned data block by block. For each data 

block, the Smart runtime scheduler equally divides it into multiple splits, where each split is 

assigned to a thread for processing. Additionally, if each thread is bound to a specific CPU core, 

the performance is improved significantly (using OMP_PROC_BIND as shown earlier). 

 

In processing elements within a split, there are two key operations, reduction and combination, 

which are carried out on two core map structures, a reduction map and a combination map, 

respectively. 

 

To support these operations, the programmers need to define a reduction object, which 

represents the data structure of value in the key-value pairs of the two maps. This data structure 

maintains the accumulated (or reduced) value across all key-value pairs that have the same 

key.  

 

In the reduction operation, a key is first generated for each element in the split. With this key, 

the runtime next locates a reduction object in the reduction map, and then the corresponding 

element is accumulated on this reduction object. In the combination process, all the reduction 

maps are combined into a single combination map locally, and then all the combination maps on 

each node are further merged on the master node. 

 

The above execution flow modifies the original MapReduce processing, but it is also the key to 

the high memory efficiency of Smart. Specifically, explicit declaration of the reduction object 

eliminates the shuffling phase of MapReduce. 

 

Best Practices 

The default mode for any executable created (like the examples) is for Yarn integration to be 

enabled, i.e. for the process to be run through Yarn using the yarn jar command. It is often 

beneficial to develop and validate the Smart code as an MPI executable first without running it 

through Yarn. 

 

For this reason, when testing the code in a standalone manner, it is useful to define the macro 

 

#define DISABLE_YARN_INTEGRATION 

#include “scheduler.h” 

 

before the first instance of scheduler.h is included. 

 

Once the code is compiled, we will have a standard MPI executable that can be run with 

mpiexec/mpirun as: 

 

mpiexec -n 2 <smart mpi binary> <input file> 
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If the code output is as expected, the macro DISABLE_YARN_INTEGRATION can then be 

removed and the code recompiled. Now the executable can only be run through Yarn using the 

familiar pattern of 

 

yarn jar <mpich yarn jar> -a <yarn enabled binary> -o <input file> … 

 

Examining Output 

Consider running the histogram_time_sharing example. In standalone development mode 

(refer section: “Best Practices”), the example can be run as: 

 

mpiexec -n 1 ./histogram_time_sharing 

 

The expected output should be 

Simulation time = 0.00 secs. 

Simulation data is ready... 

Run in-situ processing... 

Scheduler: Initializing with 2 threads and 1 nodes... 

Scheduler: Constructing the reduction map for all the threads... 

Scheduler: Reduction map for 2 threads is ready. 

In-situ processing is done. 

 

Combination map on node 0: 

 (key = 0, value = (count = 100)) 

 (key = 1, value = (count = 100)) 

 (key = 2, value = (count = 100)) 

 (key = 3, value = (count = 100)) 

 (key = 4, value = (count = 100)) 

 (key = 5, value = (count = 100)) 

 (key = 6, value = (count = 100)) 

 (key = 7, value = (count = 100)) 

 (key = 8, value = (count = 100)) 

 (key = 9, value = (count = 100)) 

 (key = 10, value = (count = 24)) 

Final output on the master node: 

100 100 100 100 100 100 100 100 100 100 24  

Analytics time = 0.00 secs. 

Total processing time on node 0 = 0.00 secs. 

 

When running through Yarn integrated mode, the output is stored as part of the Container logs. 

These can be inspected using the Yarn logs command, i.e. 

 

yarn logs -applicationId <applicationId> 
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Like any Yarn application, logs belonging to the Client, Container and ApplicationMaster’s 

Container would be displayed and the program output is stored as part of the Container logs. 

This requires the relevant Yarn log settings to be properly configured. 

Smart Initialization API 

Smart is implemented in C++ and thus has a C++ based API. The following table illustrates the 

APIs that are relevant for the initialization of Smart. 

 

Functions Provided by the Scheduler 

SchedArgs(int num_threads, size_t chunk_size, const void∗ extra_data, 
int num_iters) 

Initializes the Smart scheduler argument by specifying the # of threads, the size of a unit 
chunk, the extra data, and the # of iterations. 

explicit Scheduler(const SchedArgs& args) 

Initializes the Smart runtime system. 

void set_global_combination(bool flag) 

Enable or disable global combination, which is enabled by default. 

const map < int, unique_ptr < RedObj >>& get_combination_map() const 

Retrieves the combination map. 

void run(const In∗ in, size_t in_len, Out∗ out, size_t out_len) 

Runs the analytics by generating a single key given a unit chunk in time sharing mode. 

void run2(const In∗ in, size_t in_len, Out∗ out, size_t out_len) 

Runs the analytics by generating multiple keys given a unit chunk in time sharing mode. 

void feed(const In∗ in, size_t in_len) 

Feeds an input in space sharing mode. 

void run(Out∗ out, size_t out_len) 
Runs the analytics by generating a single key given a unit chunk in space sharing mode. 

void run2(Out∗ out, size_t out_len) 
Runs the analytics by generating multiple keys given a unit chunk in space sharing mode. 

Functions Provided by the Partitioner 

Partitioner(const string& filename, const string& varname, size_t 

chunk_size) 

Initializes the Smart partitioner by specifying the filename, the variable name and the size of a 
unit chunk. 
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load_partition() 

Loads a data partition. 

get_len() const 

Retrieves the partition length. 

get_data() const 

Retrieves the partitioned data. 

 
Table 2: Smart Initialization API. 

Initializing Smart in Various Modes 

To initialize Smart, a SchedArgs object is created with the relevant parameters as shown in 

Table 2. Classes which represent the actual problem must inherit the Scheduler class as 

explained later. The SchedArgs created earlier is then simply passed into the constructor, 

assuming it is defined in line with C++ inheritance rules. 

 

Time Sharing Mode 

 

void simulate(Out* out, size_t out_len, const Param& p) { 

/* Each process simulates an output partition of data type In and 

length in len. 

*/ 

// Launch Smart after simulation in the parallel code region. 

SchedArgs args(num_threads, chunk_size, extra_data, num_iters); 

unique_ptr<Scheduler<In, Out>> smart(new DerivedScheduler<In, 

Out>(args)); 

smart->run(partition, in_len, out, out_len); 

} 

Listing 1: Initializing Smart in Time Sharing 

 

In time sharing mode, Smart can minimize the modification of the original simulation code. As 

demonstrated in Listing 1, to run Smart in this mode, only 3 lines need to be added when the 

simulation data is ready. The example code shows the execution of processing a single time-

step. Note that the definition of reduction object, as well as the derived Smart scheduler class, 

are implemented in a separate file for Smart analytics, which does not add any complexity of the 

original simulation code. Developing Smart analytics code will be discussed in the Section on 

Smart Runtime and Execution API. 

 

After each data partition is simulated given a set of simulation parameters p, scheduler 

argument args is constructed, which specifies the number of threads per process 
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num_threads, the size of a unit chunk chunk_size, the extra data for analytics extra_data, 

and the number of iterations num_iters. To maximize the analytics performance, 

num_threads should be equal to the number of threads used for simulation. chunk_size is 

the size of processing unit, and it can often be viewed as the length of feature vector in analytics 

applications. extra_data is used when some additional input is required, e.g., the initial k 

centroids are required in k-means clustering. num_iters can be specified for iterative 

processing. By default, extra_data and num_iters are initialized as a null pointer and 1, 

respectively. A derived Smart scheduler instance smart is constructed with the scheduler 

argument args. 

 

The Smart scheduler class is internally a template class and is explicitly instantiated for certain 

Input and Output types only. These types are documented at ?. The size of reduction object 

RedObj is set for its deserialization required by message passing. In the current 

implementation, the reduction object should have a fixed size. Smart then launches analytics by 

taking the partitioned data as the input, and the final result will be output to the given 

destination. 

 

Alternatively, the user can also call get_combination_map() to retrieve the 

combination_map, and then manually transform it into a desired output. During the entire 

process, all the parallelization details are hidden in a sequential programming view. 

 

Space Sharing Mode 

 

void simulate(Out* out, size_t out_len, const Param& p) 
{ 

  /* Initialize both simulation and Smart. */ 

  #pragma omp parallel num_threads(2) 

  #pragma omp single 

  { 

    #pragma omp task // Simulation task. 

    { 

      omp_set_num_threads(num_sim_threads); 

      for (int i = 0; i < num_steps; ++i) 
      { 

        /* Each process simulates an output partition of length in 

len. */ 

        smart->feed(partition, in_len); 

      } 

    } 
 

    #pragma omp task // Analytics task. 

    for (int i = 0; i < num_steps; ++i) 

      smart->run(out, out_len); 

  } 
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} 

Listing 2: Initializing Smart in Space Sharing 

 

Space sharing mode requires more code reorganization than time sharing mode, since an extra 

task-level parallelism has to be deployed. Particularly, two Open-MP tasks are created for 

concurrent execution. After the initialization of both simulation and Smart, one task 

encapsulates the simulation code and then feeds its output to Smart, and the other task runs the 

analytics. The number of threads used for simulation is specified within the simulation task and 

the number of threads used for analytics is specified when Smart is initialized. 

 

Note that MPI codes are hidden in both simulation task and analytics task, and in this mode MPI 

functions may be called concurrently by different threads. Thus, to avoid the potential data race, 

the level of thread support should be upgraded to MPI_THREAD_MULTIPLE when MPI 

environment is initialized. 

 

Offline Analytics 

 

void offlineRun(Out* out, size_t out_len, const string& filename, 

const string& varname, const SchedArgs& args) 
{ 
  // Data partitioning and data loading. 
  unique_ptr<Partitioner> p(new DerivedPartitioner(filename, varname, 

args.chunk_size)); // Both NetCDF and HDF5 formats are natively 

supported. 
  p->load_partition(); 

 
  // Launch Smart after a data partition is loaded. 
  unique_ptr<Scheduler<In, Out>> smart(new DerivedScheduler<In, 

Out>(args)); 
  smart->set_red_obj_size(sizeof(RedObj)); 
  smart->run((const In*)p->get_data(), p->get_len(), out, out_len); 
} 

Listing 3: Initializing Smart in Offline Mode 

 

Compared with in-situ analytics, to launch Smart for offline analytics, some extra effort is 

required for loading a specified input file and partitioning the input data. Specifically, a derived 

partitioner DerivedPartitioner is created. 

 

The current implementation natively support loading data in NetCDF or HDF5 format, by 

providing both NetCDFPartitioner and HDF5Partitioner as two specific partitioner 

instances. To partition the data, the user only needs to specify the input file name filename, 

the variable name varname, and the unit chunk size chunk_size in the Scheduler argument 

args. A data partition is loaded as a 1D array for the current computed node. To maximize the 
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I/O performance, the implementation partitions the array data in the highest dimension by 

default. A derived Smart scheduler instance is then created. In the run command, both 

partitioned data and partition size are passed to the constructor, by calling the partitioner’s 

function get_data and get_len, respectively. 

 

The offline analytics currently cannot work for the case of massive arrays, where the number of 

array elements may overflow the range of size_t (unsigned long integer). Besides, the 

partitioning process and data processing process are decoupled in the implementation, and 

each partition is fed to Smart scheduler in one time. Thus, this simple implementation requires 

that each partition should be smaller than the memory size. We do not intend to overcomplicate 

the design of offline analytics here, because it turns out that in practice a partitioned array in a 

single data file usually can be fit into the memory. In addition, if there is a need to support 

loading data in other formats, the user can develop a customized partitioner specific to the data 

format. Specifically, Smart allows the user to provide a derived partitioner, by overriding some 

pure virtual functions in the file include/partitioner.h. 

 

Explicit Instantiations of Smart 

The distributed binary package has explicit instantiations of Smart for the following classes: 

 

Class In Class Out 

double double 

double double* 

double unsigned long 

float unsigned long 

float double 

Table 3: Explicit Instantiations of Smart 

Smart Runtime and Execution API 

 

Functions Implemented by the Scheduler 

virtual int gen_key(const Chunk& chunk, const In∗ data, const map < 
int, unique_ptr < RedObj >>& com_map) const 

Generates a single key given the unit chunk (and combination map if necessary) 

virtual void gen_keys(const Chunk& chunk, const In∗ data, vector < 
int >& keys, const map <int, unique_ptr< RedObj >>& com_map) const 
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Generates multiple keys given the unit chunk (and combination map if necessary) 

virtual void accumulate(const Chunk& chunk, const In∗ data, 
unique_ptr < RedObj >& red obj) = 0 

Accumulates the unit chunk on a reduction object 

virtual void merge(const RedObj& red obj, unique_ptr < RedObj >& 

com_obj) = 0 

Merges the first reduction object into the second reduction object, i.e., a combination object 

virtual void process_extra_data(const void∗ extra_data, map < int, 
unique_ptr < RedObj >>& com_map) 

Processes the extra input data to help initialize the combination map if necessary 

virtual void post_combine(map < int, unique_ptr < RedObj >> & 

com_map) 

Performs post-combination processing and update the combination map if necessary 

virtual void deserialize(unique_ptr<RedObj>& obj, const char* data) 

const = 0; 

Construct a reduction object from serialized reduction object. 

virtual void convert(const RedObj& red_obj, Out∗ out) const 

Converts a reduction object to an output result if necessary 

Functions Implemented by the RedObj 

virtual void reset() 

Reset the reduction object 

virtual bool trigger() const 

Set a trigger function for early emission 

 
Table 4: Smart Execution API. 

 

This set of API is specific to an application, and is unrelated to any analytics mode. Thus, the 

same application developed based on Smart can run in different modes without any modification 

of the application-specific analytics code. The functions that have to be defined by the derived 

class are usually the gen_key, gen_keys (optional), accumulate, merge, deserialize. 

 

Particularly, the directory examples/common_app_headers has provided six different 

example applications. This set of API is used for implementing the run (or run2) function in the 

previous API set shown by Table 2. This API set mainly includes three functions – gen_key or 

gen_keys, accumulate, and merge. gen_key or gen_keys, as well as accumulate 

are invoked in the reduction phase, and merge is called in the combination phase. Particularly, 

the run function invokes gen_key to generate a single key given a unit chunk for most 

applications, and run2 function calls gen_keys to generate multiple keys given a unit chunk 
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for other analytics such as window-based applications. In addition, the programmers need to 

define a specialized reduction object as a subclass of the interface class RedObj. 

 

We now illustrate the use of our system API by creating two example applications, histogram 

and k-means clustering, as an instance of non-iterative and iterative application, respectively. 

In addition, to demonstrate the optimization of early emission of reduction object, we also 

provide another window-based example application – moving_average. 

 

Histogram as a Non-Iterative Example Application 

 

Derive a reduction object: 
  struct Bucket : public RedObj { 
    size_t count = 0; 
}; 

 
Derive a system scheduler: 
template <class In> 
 class Histogram : public Scheduler<In, size_t> { 
  // Compute the bucket ID as the key. 
  int gen_key(const Chunk& chunk, const In* data, const map<int, 

unique_ptr<RedObj>>& combination_map) const override { 
    // Each chunk has a single element. 
    return (data[chunk.start] - MIN)) / BUCKET_WIDTH; 
  } 
  // Accumulate chunk on red_obj. 
  void accumulate(const Chunk& chunk, const In* data, 

unique_ptr<RedObj>& red_obj) override { 
    if (red_obj == nullptr) red_obj.reset(new Bucket); 
    red_obj->count++; 
  } 
  // Merge red_obj into com_obj. 
  void merge(const RedObj& red_obj, unique_ptr<RedObj>& com_obj) 

override { 
    com_obj->count += red_obj->count; 
  } 
}; 

Listing 4: Histogram Non-Iterative. 

 

As the first example, Listing 4 shows the pseudo code of equi-width histogram construction. To 

begin with, the user needs to define a derived reduction object class. In this example, the class 

Bucket represents a histogram bucket, consisting of a single field count. Next, a derived 

system scheduler class Histogram is defined. Note that to facilitate the manipulation on the 

datasets of different types, in our system the derived class can be defined as either a template 

class or a class specific to an input and/or output array type. For this kind of non-iterative 

application, the user usually only needs to implement three functions in Table 4 – gen_key, 
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accumulate, and merge. First, the gen_key function computes the bucket ID based on the 

element value in the input data chunk, and the bucket ID serves as the returned key. For 

example, if the element value is located within the value range of the first bucket, then 0 will be 

returned. 

For simplicity, we assume that the minimum element value can be taken as priori knowledge or 

be retrieved by an earlier Smart analytics job. Note that in this application, since each element 

should be examined individually, each chunk as a processing unit only contains a single 

element. Second, in the reduction phase, the accumulate function accumulates count of the 

bucket that corresponds to the key returned by the gen_key function. Lastly, given two 

reduction objects, where the first one red_obj is from the reduction map, and the second one 

com_obj is from the combination map, the merge function merges count on com_obj in 

the combination phase. 

 

A step-by-step development of a Histogram application is outlined in <PPT link>. 

 

K-Means as an Iterative Example Application 

 

Derive a reduction object: 
  template <class T> 
  struct ClusterObj<T> : public RedObj { 
    T centroid[NUM_DIMS]; 
    T sum[NUM_DIMS]; 
    size_t size = 0; 
    void update(); // Update centroid by sum and size, which are then 

reset. 
  }; 

 
Derive a system scheduler: 
  template <class T> 
  class KMeans : public Scheduler<T, T*> { 
    // Compute the ID of the nearest centroid as the key. 
    int gen_key(const Chunk& chunk, const T* data, const map<int, 

unique_ptr<RedObj>>& combination_map) const override { 
      /* Let C be the a set of centroids from the reduction objects 

in 
      combination map. */ 
      /* Find the centroid c nearest to the point represented by 

chunk from C.*/ 
      /* Return the key associated with c in combination map. */ 
    } 

 
   // Accumulate chunk on sum and size of red_obj. 
   void accumulate(const Chunk& chunk, const T* data, 

unique_ptr<RedObj>& red_obj) override { 
      red_obj->sum += chunk; // Vector addition. 
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      red_obj->size++; 
    } 
    // Merge red obj into com_obj on sum and size. 
    void merge(const RedObj& red_obj, unique_ptr<RedObj>& com_obj) 

override { 
      com_obj->sum += red_obj->sum; // Vector addition. 
      com_obj->size += red_obj->size; 
    } 
  // Process extra_data to set up the initial centroids in 

combination_map. 
  void process_extra_data(const void* extra_data, map<int, 

unique_ptr<RedObj>>& 
combination_map) override { 
    /* Transform extra data into a set of cluster objects C. */ 
    /* Load C into combination_map. */ 
  } 
  // Update the clusters for the next iteration. 
  void post_combine}(map<int, unique_ptr<RedObj>>& combination_map) 

override { 
    for (auto& pair : combination_map) { 
      RedObj* red_obj = pair->second.get(); 
      red_obj->update(); 
    } 
  } 

 
  // Extract the centroid from red_obj as the output. 
  void convert(const RedObj& red_obj, T** out) const override { 
    memcpy(*out, red_obj->centroid, sizeof(T) * NUM_DIMS); 
  } 
}; 

Listing 5: K-Means Iterative. 

 

As shown by Listing 5, the second example is k-means clustering, which represents a set of 

applications involving iterative processing. First of all, the class ClusterObj is defined as a 

derived reduction object class, indicating a cluster in a multi-dimensional space. In this class, 

centroid, sum and size represent the centroid coordinate, the sum of the distances from 

each point to the centroid, and the number of points in the cluster, respectively. 

 

Next, KMeans is defined as a derived system scheduler class. For this kind of iterative 

application, usually most virtual functions should be overwritten. First, given a point represented 

by the input data chunk, the gen_key function finds the closest centroid and returns the 

centroid ID as the key. Second, similar to the previous example, the accumulate function 

accumulates the two distributive (or associative and commutative) fields sum and size on the 

reduction object in reduction_map, and the merge function accumulates reduction objects 

in combination_map. 
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The process_extra_data function then initializes the combination_map with the 

extra_data that indicates some initial centroids, and the post_combine function prepares 

for the next iteration, by updating all the clusters. Specifically, the centroid coordinates are 

computed by sum and size, which are then reset as zeros. Lastly, the convert function 

extracts the centroid coordinate from each reduction object as an output result. To make use of 

this function, a restriction is that, the integer key should start from 0. 

Moving Average as a Window-Based Example Application 

 

Derive a reduction object: 
  struct WinObj : public RedObj { 
    double sum = 0; 
    size_t count = 0; 
    bool trigger() const override { 
      return count == WIN_SIZE; 
    } 
  }; 

 
Derive a system scheduler: 
  template <class In> 
  class MovingAverage : public Scheduler<In, double> { 
    // Take all the element positions covered by the window as the 

keys. 
    void gen_keys(const Chunk& chunk, const In* data, vector<int>& 

keys, const 
map<int, unique_ptr<RedObj>>& combination_map) const override { 
      // Each chunk has a single element, which is the center of the 

window. 
      for (int i = max(chunk.start - WIN_SIZE / 2, 0); i <= 

min(chunk.start + WIN_SIZE / 2, total_len_); ++i) { 
        keys.emplace_back(i); 
    } 
  } 

 
    // Accumulate chunk on red obj. 
    void accumulate(const Chunk& chunk, const In* data, 

unique_ptr<RedObj>& red_obj) override { 
      if (red_obj == nullptr) red_obj.reset(new WinObj); 
      red_obj->sum += data[chunk.start]; 
      red_obj->count++; 
    } 

 
    // Merge red obj into com obj. 
    void merge(const RedObj& red_obj, unique_ptr<RedObj>& com_obj) 

override { 
      com_obj->sum += red_obj->sum; 
      com_obj->count += red_obj->count; 
    } 
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    // Transform red obj into average as the output. 
    void convert(const RedObj& red_obj, double* out) const override { 
      *out = red_obj->sum / red_obj->count; 
    } 
  }; 

Listing 6: K-Means Iterative. 

 

In practice, simulation output may contain some short-term volatility or undesired fine-scale 

structures. In such cases, it is important to perform analytics for specific ranges of time-steps, 

also referred to as sliding windows. In some other cases, in-situ analytics can involve certain 

preprocessing steps like denoising and smoothing, which also execute on a sliding window 

basis. A simple example of such window-based analytics is moving average, where the average 

of the 

elements within every window snapshot is computed. A critical challenge in the implementation 

of such window-based analytics is that of high memory consumption. 

 

As an optimization for memory efficiency, Smart can support early emission of reduction object. 

To support such an optimization, the user only needs to overwrite the trigger function when 

deriving the reduction object class. This trigger evaluates a self-defined emission condition, and 

determines if the reduction object should be early emitted from the reduction map. By default, 

the function returns false, and hence no early emission is triggered. 

 

Listing 6 shows the implementation of moving average as a window-based application example. 

In this example, the reduction object counts the number of elements covered by a window, and 

the emission condition can be whether the count is equal to the window size. This way, the 

maximal number of reduction objects maintained by Smart can be massively reduced, leading to 

a potentially significant improvement of memory efficiency. Note that since each input element 

contributes to multiple window snapshots, here we use the gen_keys function instead of 

gen_key in Table 4, to map each element to multiple keys. It should be noted that, this 

optimization is not only specific to in-situ window-based analytics, but also can be broadly 

applied to other applications, even for offline analytics. A simple example can be matrix 

multiplication, where the number of element-wise multiplications that contribute to a single 

output element is a fixed number. Another example is time series, which can be viewed be as a 

window-based application in time dimension. 

 

Known Issues 

1. Currently cannot pass MPI Hostfile through mpich2-yarn. 

2. Specifying -n 2 on a single node cluster, seems to cause a hang. 
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Frequently Asked Questions (FAQs) 

For typical problems faced and their resolution, please visit the iNFORMER FAQ page. 

Support Details 

For further queries and iNFORMER Support, please send a mail to 

 

informer@RNET-Tech.com 
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